

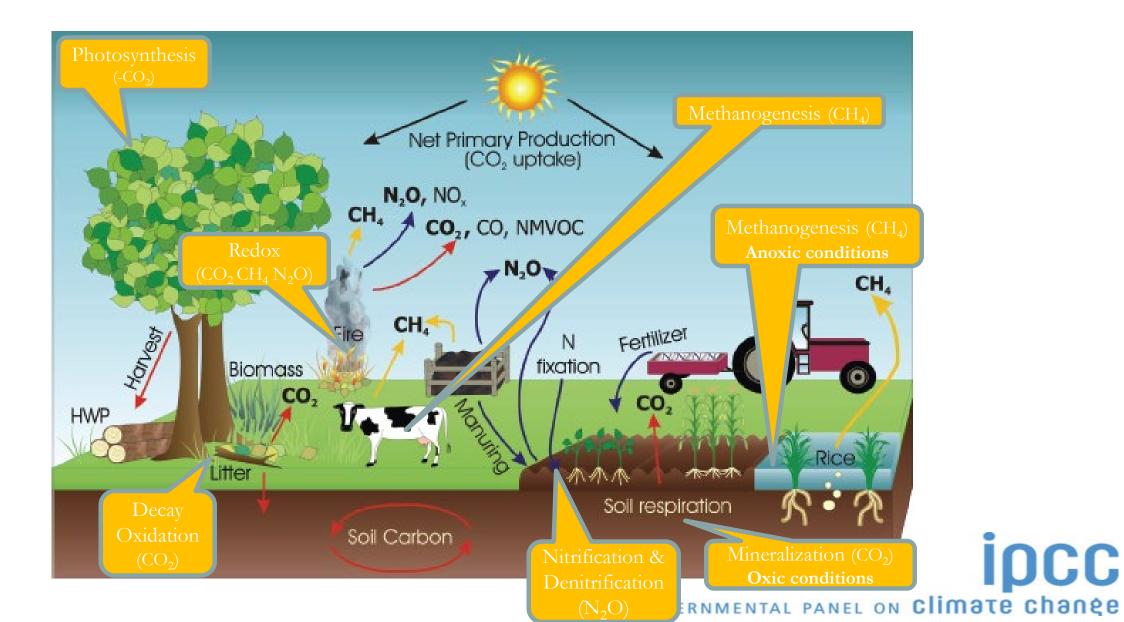
Use of the IPCC Inventory Software to Establish the National GHG inventory in the Agriculture, Forestry and Other Land Use (AFOLU) sector Other GHG emissions

IPCC TFI TSU

IPCC Guidelines

Uolume 4 (AFOLU), Chapters 2, 7, 11

✓ 2006 IPCC Guidelines


✓ 2019 Refinement

Wetlands Supplement, Chapters 2, 3, 4, 5

Processes covered by IPCC Guidance on AFOLU

Organic Matter

Organic matter is heterogeneous very complex compound. Generally, as weight, is

- ➢ 45−55% Carbon
- ➢ 35−45% Oxygen
- ➢ 3−5% Hydrogen
- ➤ 1-4% Nitrogen

Organic matter is the component of

- > <u>Biomass</u>, living organic matter, which can have
 - \succ Either an annual cycle [Growth \rightarrow Harvest&Consumption or Decay to dead organic matter]
 - Or a multiyear cycle [Growth in plant perennial tissues (wood)] and thus stores Carbon across years

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

Dead organic matter, dead wood, litter, soil organic matter, harvested wood products which stores Carbon across years

Organic Matter

Organic matter redox/decay processes timescale

- > hours
- > within a year
- > years/centuries
- centuries/millennia

Organic matter redox/decay results in

- \succ CO₂, CH₄, N₂O
- > NH₃/NH₄⁺, NO_X
- \succ H₂O, N₂

Nitrogen fertilizers

=> N₂O emissions

Carbonaceous amendments

=> CO₂ emissions

□ Nitrogen/Carbonaceous fertilizers (Urea) => N₂O + CO₂ emissions

Notations

- Nitrogen content of N₂O is indicated as N₂O-N, and emissions of N₂O-N are converted to N₂O emissions multiplying by 44/28 (proportion of the atomic weight of the two molecules)
- □ **Carbon** content of **CH**₄ **is** indicated as **CH**₄-**C**, and emissions of **CH**₄-**C** are **converted** to **CH**₄ emissions multiplying **by 16/12** (proportion of the atomic weight of the two molecules)
- □ **Carbon** content of **CO**₂ **is** indicated as **CO**₂-**C**, and emissions of **CO**₂-**C** are **converted** to **CO**₂ emissions multiplying **by 44/12** (proportion of the atomic weight of the two molecules)
- **Emissions have a positive sign, while CO_2 removals have a negative sign**. This is because the "point of view" of an NGHGI is the atmosphere, so a positive sign means an addition of GHG to the atmosphere, while a negative sign means a subtraction of CO_2 from the atmosphere
- Carbon stock gains have a positive sign, while Carbon stock losses have a negative sign. This is because the "point of view" is the C pool to which the C stock pertains, so a positive sign means an addition of Carbon to the C pool, while a negative sign means a subtraction of C stock from the C pool
- □ Thus, **converting** a net **C stock** change **to CO**₂ net **emission/removal** requires to multiplying the net C stock **by -44/12**, given that the sign is to be changed

INTERGOVERNMENTAL PANEL ON Climate change

Stratification of Activity Data

Stratification of activity data promotes accuracy and precision since:

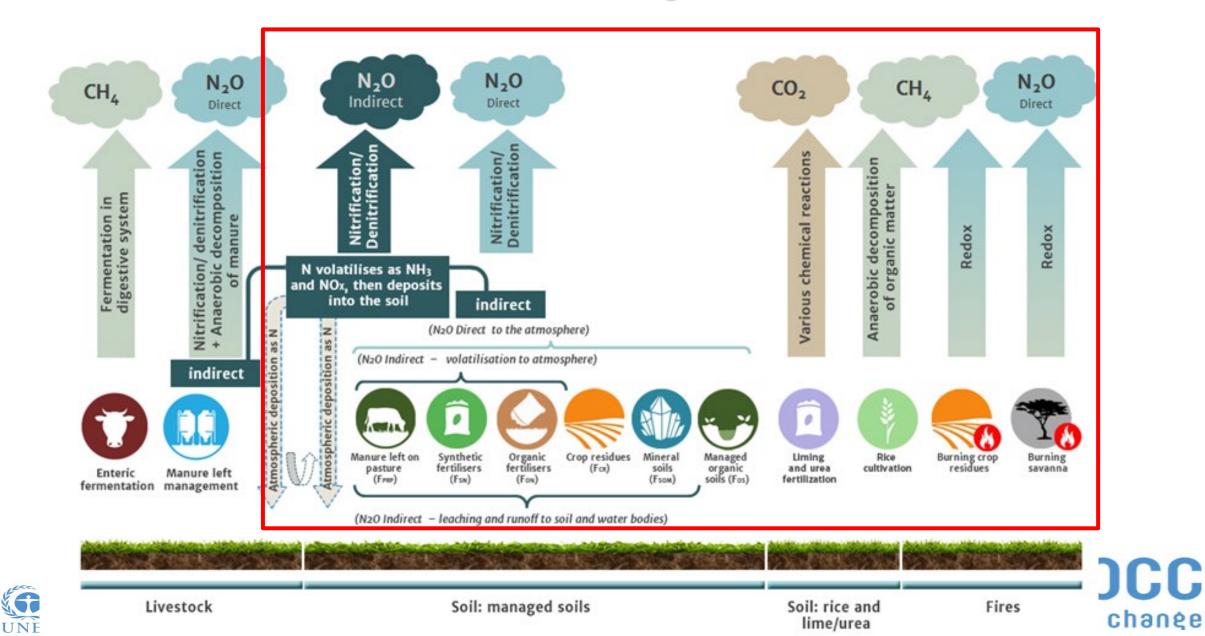
- ✓ Subdivisions are more homogenous than the whole population, and thus associated EF are more accurate and precise
- ✓ Propagation of random error, as it occurs summing up subdivisions' estimates, tends to cancel those out -Systematic Errors instead DO NOT cancel out across propagation-

Systematic Errors instead DO NOT cancel out across propagation, thus, GOOD PRACTICE is to always REMOVING any identified SYSTEMATIC ERROR *-a biased estimate is NOT acceptable in an NGHGI-*; while minimizing RANDOM ERRORS *-these indeed cannot be zeroed!-*.

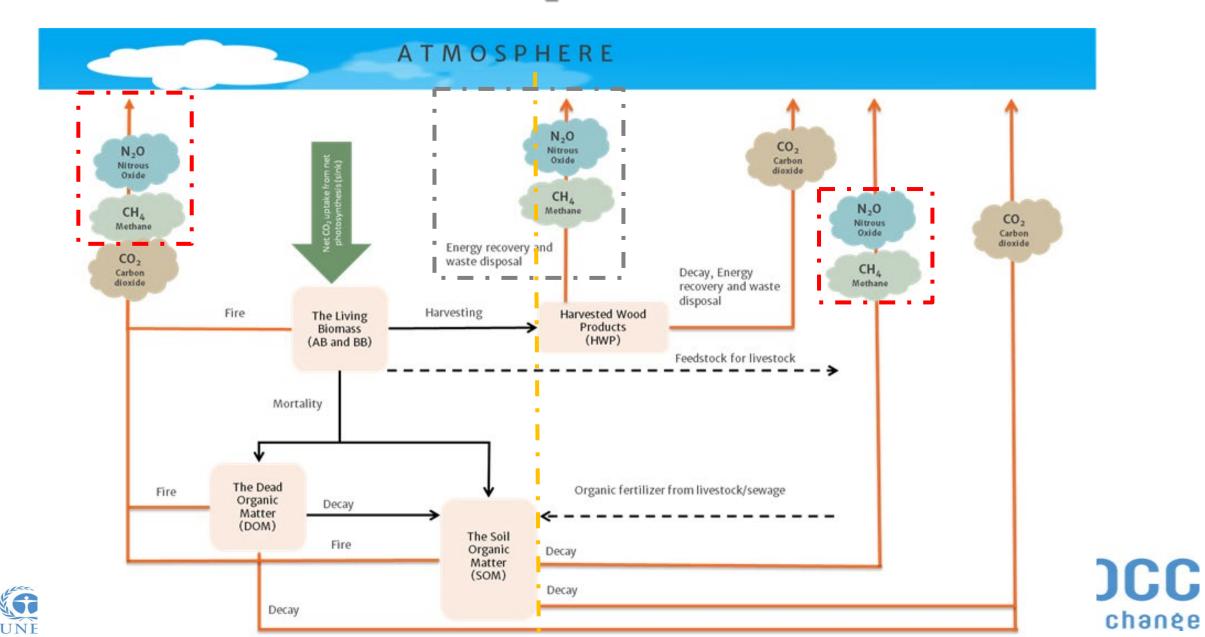
Random errors do bias neither the level of emissions/removals estimated nor the estimated change across time (mitigation); while Systematic errors do.

3.C categories: Aggregate sources & non-CO₂ emissions source on land

Tool:


Land Representation (limited to some sources)

3.C Calculation Worksheets



GHG emissions in Agriculture

WMO

GHG emissions and CO₂ removals from land use

WMO

AFOLU anthropogenic GHG Emissions and Removals

- Emission and Removal Processes GHG fluxes in the AFOLU Sector are estimated in two alternative ways
 - 1. Indirectly, as a net change in C stock in a C pool. The use of C stock changes to infer CO₂ emissions and removals from C pools, is based on the fact that changes in ecosystem C stocks are predominately (but not exclusively*) through CO₂ exchange between the land surface and the atmosphere
 - **2. Directly as flux rates** to(/from) the atmosphere (used for estimating non-CO₂ emissions, CO₂ emissions not sourced from C pools and those CO₂ emissions and removals from SOM for which the C stock is not quantifiable in an operational way, e.g. drainage/rewetting of organic soils).
 - * (i.e. processes of lateral C transfer, not to the atmosphere, such as leaching are assumed to be negligible)

AFOLU anthropogenic GHG Emissions and Removals

Organic matter decays to CH₄ under anoxic conditions in waterlogged soils, in:

- > 3.C.7 Rice cultivation
- > 3.C.8 Drained organic soils
- > 3.C.9 Drainage ditches on organic soils
- > 3.C.10 Rewetting organic soils
- > 3.C.11 Rewetting of Mangroves and Tidal marshes
- > 3.C.13 Rewetting inland wetland mineral soils

Organic matter is **reduced to CH₄** and **oxidised to N₂O & CO₂** by combustion, in:

INTERGOVERNMENTAL PANEL ON Climate change

> 3.C.1 Burning

□ Organic matter is oxidised to N₂O under oxic conditions in soils, in

➢ 3.C.4 Direct N₂O emissions from managed soils

AFOLU anthropogenic GHG Emissions and Removals

CO₂ and N₂O emissions originates from addition of chemical-mineral components (fertilizers, amendments)

- > 3.C.2 Liming
- > 3.C.3 Urea application
- ➢ 3.C.4 Direct N₂O emissions from managed soils

□ Indirect N₂O emissions originate from N volatilized or leached

- ➢ 3.C.5 Indirect N₂O emissions from managed soils
- > 3.C.6 Indirect N₂O emissions from manure management

Direct N₂O emissions originate from N added to aquaculture

➢ 3.C.12 N₂O emissions from aquaculture

3.C Aggregate sources and non-CO₂ emissions source on land

3.C categories are a mix of:

✓ <u>land-based sources of non-CO₂ emissions</u>, which requires the land to be identified, and possibly tracked, through the Land Representation:

INTERGOVERNMENTAL PANEL ON Climate change

- > 3.C.1 Burning (on-site) CH_4 , N_2O (, CO_2)
- > 3.C.8 CH₄ emissions from drained organic soils CH_4
- > 3.C.9 CH₄ emissions from drainage ditches on organic soils CH_4
- > 3.C.10 CH₄ emissions from rewetting of organic soils CH_4
- > 3.C.11 CH₄ emissions from rewetting of mangroves and tidal marshes CH_4
- > 3.C.14 CH₄ emissions from rewetted and created wetland on IWMS* CH₄
- ✓ <u>Aggregated sources, which are thus not land-based:</u>

* Inland Wetland Mineral Soils

3.C Aggregate sources and non-CO₂ emissions source on land

3.C categories are a mix of:

- ✓ <u>land-based sources of non-CO₂ emissions</u>, which requires the land to be identified, and possibly tracked, through the Land Representation:
- ✓ <u>Aggregated sources</u>, which are thus not land-based:
 - ➢ 3.C.2 − Liming − CO₂ (mineral)
 - > 3.C.3 Urea application CO₂ (non-biogenic)
 - > 3.C.4 Direct N₂O emissions from managed land [*excluding N mineralization in mineral soils*] N_2O

INTERGOVERNMENTAL PANEL ON Climate change

- > 3.C.5 Indirect N₂O emissions from managed soils N_2O
- > 3.C.6 Indirect N₂O emissions from manure management N_2O
- ➢ 3.C.7 − Rice cultivation − CH₄
- > 3.C.12 N₂O emissions from aquaculture N_2O

The IPCC Inventory Software

□ All methods in the 2006 IPCC Guidelines and its Wetlands Supplement are implemented in the IPCC Inventory Software

Thus, needed flexibility to deal with any national circumstances, as per IPCC tiered approach, is ensured

Subnational disaggregation (Geographical Zone)

Thus, tracking of specific activities/projects, and associated emission level & trend, within a national GHG inventory is allowed

Interoperability with UNFCCC ETF reporting tool allows to export a complete set of CRTs and upload it in the UNFCCC ETF reporting tool User-specific Tier 3 estimates to be accommodated in Tier 1 methodological approach worksheets

INTERGOVERNMENTAL PANEL ON Climate change

□ AFOLU sector Guidebook – version 1 under development

Case Study for Land – Land dynamic

Region 1:

- > Forest land is first expanded on Grassland, and then deforested likely for Settlements
- Settlements is expanded likely on Grassland, and then likely on Forest land

Region 2:

- Primary forest converted to Forest plantation
- > Mangrove forest is deforested to urban park, and a fraction subsequently abandoned to Tidal marsh
- > Oil Palm plantation is converted to Lotus cultivation; thus, land is rewetted
- Tidal marshes excavated and converted to Harbor

Region 3:

Rotation Rice (1y) – Maize (1y) – Poplar (5y) established on land cultivated at rice for long-term;
 then replaced with a rotation Rice (2y) – Maize (2y) – Poplar (10y)
 Maize is limed; Maize - Rice – Poplar are fertilized with Urea and manure

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

Case Study for 3.C – GHG emissions

Estimate CO₂ emissions from:

- ➢ 3.C.2 Liming
- > 3.C.3 Urea application

Estimate Direct & Indirect N₂O emissions from:

- ➢ 3.C.4 Direct N₂O emissions from managed soils
- ➢ 3.C.5 Indirect N₂O emissions from managed soils

Estimate CH₄ emissions from:

- ➢ 3.C.7 Rice cultivation
- > 3.C.8 Drained organic soils
- > 3.C.9 Drainage ditches on organic soils
- > 3.C.11 Rewetting of Mangroves and Tidal marshes
- > 3.C.13 Rewetting inland wetland mineral soils

INTERGOVERNMENTAL PANEL ON Climate change

2006 IPCC Categories

2 - Industrial Processes and Product Use
 3 - Agriculture, Forestry, and Other Land Use

3.B.1.a - Forest land Remaining Forest I
 3.B.1.b - Land Converted to Forest land
 3.B.1.b.i - Cropland converted to Fo
 3.B.1.b.ii - Grassland converted to F
 3.B.1.b.iii - Wetlands converted to F
 3.B.1.b.iv - Settlements converted t
 3.B.1.b.v - Other Land converted to

3.B.2.a - Cropland Remaining Cropland

3.B.3.a - Grassland Remaining Grassla
 3.B.3.b - Land Converted to Grassland
 3.B.3.b.i - Forest Land converted to

3.B.4.a - Wetlands Remaining Wetland
 3.B.4.a.i - Peat Extraction remaining
 3.B.4.a.ii - Flooded Land remaining
 3.B.4.a.iii - Other Wetlands Remaini
 3.B.4.b - Land Converted to Wetlands
 3.B.4.b.i - Land converted for Peat
 3.B.4.b.ii - Land converted to Flood

3.B.3.b.ii - Cropland converted to Gr
 3.B.3.b.iii - Wetlands converted to G
 3.B.3.b.iv - Settlements converted t
 3.B.3.b.v - Other Land converted to

3.B.2.b - Land Converted to Cropland
 3.B.2.b.i - Forest Land converted to
 3.B.2.b.ii - Grassland converted to
 3.B.2.b.iii - Wetlands converted to C
 3.B.2.b.ii - Settlements converted t

B 3.B.1 - Forest land

B- 3.B.2 - Cropland

B 3.B.3 - Grassland

⊡ 3.B.4 - Wetlands

Open the Calculation Worksheets

□ Clicking on **blue categories** opens the relevant calculation worksheets where to enter parameters and Carbon-Stock-Change Factors.

□ Each category is populated with the worksheets needed according to the units of land entered in the land representation as well as with the selection of the methodology to apply in each of the C pools.

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

Calculation Worksheets

□ The *Software* maps each unit of land to the relevant TAB, for those 3.C categories which are land-based, although users have to select each unit of land from the dropdown menu

□ Although land categories are shown in blue ink -e.g. 3.B.1 Forest land-, calculation worksheets are limited to subcategories -e.g. 3.B.1.a Forest land remaining Forest land-.

Although land conversion categories are shown in blue ink -e.g. 3.B.1.b Land converted to Forest land-, calculation worksheets are limited to subcategories -e.g. 3.B.1.b.i Cropland converted to Forest land-.

Calculation Worksheets

Carbon Dioxide:

- ✓ Liming
- ✓ Urea application

<u>Methane</u>:

- ✓ Rice Cultivation
- ✓ Drainage (Organic soils, Coastal Wetlands soils, Ditches)
- ✓ Rewetting (Organic soils, Coastal Wetlands soils, Wetland mineral soils)

□ <u>Nitrous Oxide</u>:

 ✓ Direct N₂O (Managed manure N available, Synthetic N applied. Organic N applied, Crop residues N, SOM Mineralized N, Manure N left on pasture, Drainage of organic soils)

IDCC

INTERGOVERNMENTAL PANEL ON CLIMATE CHANES

✓ Indirect N₂O (volatilization, leaching)

Case Study Data

CO₂ emissions from:

3.C.2 - Liming

3.C.3 - Urea application

3.C.2 - Liming

Worksheet Sector: Category: Subcategor Sheet: Data	y: 3.C.2 - Liming Annual CO2 Emissions fi	Non-CO2 Emissions Sources on Land								2	02	0
Region	Unspecified	~										
				Equat	ion 11.12							
L	and use category	Land use subdivision	Lime Type	Subdivision, if any, according to the purity of carbonate limes as well as site-level and hydrological characteristics	lime	Emission Factor (tonnes of C / tonne of lime)	Annual C emissions from liming (tonnes C / yr)	Annual CO2 emissions from liming (tonnes CO2 / yr)				
	۵ ₇	Δγ	۵Ţ	۵Ţ	м	EF	CO2-C Emissions = M * EF	CO2 Emissions = CO2-C Emissions * 44/12				
	5 1	Unspecified	Dolomite	Unspecified	256.000	0.13	33.280	122.027				
Unspeci	Tied		Limestone	Unspecified	97.000	0.12	11.640	42.680			2	X
*									2			
Total												
					353.000		44.920	164.707				

3.C.3 - Urea Application

Annual CO2 Emissions from Urea application Worksheet Sector: Agriculture, Forestry, and Other Land Use Category: Aggregate Sources and Non-CO2 Emissions Subcategory: 3.C.3 - Urea application Sheet: Annual CO2 Emissions from Urea application Data Region							20	020
		Equ	ation 11.13					
Land use category Land us	e subdivision Type of carbonate N fertilizer	Annual amount of Carbonate N- fertilizer (tonnes / yr)	Emission Factor (tonnes of C / tonne of Carbonate N-fertilizer)	Annual CO2-C emissions from Urea application (tonnes C / yr)	Annual CO2 emissions from Urea application (tonnes CO2 / yr)			
۵ ₇		м	EF	CO2-C Emissions = M * EF	CO2 Emissions = CO2-C Emissions * 44/12			
Unspecified Unspecified	Ammonium Bicarbonate	852.000	0.150	127.800	468.600			
	Urea	323.000	0.200	64.600	236.867		1)	
*						2		
Total								
		1,175.000		192.400	705.467			

N₂O emissions from:

3.C.4 – Direct N₂O emissions from managed soils

3.C.5 – Indirect N₂O emissions from managed soils

3.C.6 – Indirect N₂O emissions from manure management

3.C.4 – Manure N available as organic fertilizer

tegory: Aggregate 3.C.4 - Dir	e, Forestry and Other Land e Sources and Non-CO2 En rect N2O Emissions from ma manure N available for app	missions Sources on Land anaged soils	feed, fuel or construction us	es							202
					Equation 10.34						
Geographical zone	Manure Management System	Livestock Category	Livestock Subcategory	Livestock Subdivision	Total N excretion for the MMS (kg N/yr)	Fraction of manure N that is lost in the MMS (%) Table 10.23	Number of Animals (head)	Fraction of livestock category's manure handled using MMS in geographical zone	N in organic Bedding (solid storage and deep bedding MMS - otherwise zero) (kg N/animal/yr)	Amount or managed manure N available for application to managed soils or for feed, fuel, or construction purposes	
Z V	r s ⊽	, т т	Tsc ⊽	Tsd ♡	NEmms = N(T) * Nex(T) * MS(T,S)	Frac(LossMS)	N(T)	MS(T,S)	N(BeddingMS)	N(MMSavb)	
А	Pasture/Paddock (6	Dairy Cows	Unspecified	Unspecified	530,617.325	64.000	6,226.000		3.500	212,813.237	2 🖬 🄈
В	Anaerobic digester		Mature Dairy Cows	High-producing cows	55,862,100.341	10.000	1,556,463	0.500	1.500		2
		Other Cattle	Growing Cattle	Calves pre-weaning	2,669,925.822	10.000			1.500	2,576,782.114	
				Feedlot-fed cattle on	13,095,104.100	10.000			1.500	12,058,171.065	
				Feedlot-fed cattle on	5,126,266.386	10.000	260,935.000		1.500	4,711,490.372	
				Feedlot-fed cattle on	422,785.737	10.000	22,574.000		1.500	388,972.413	
				Feedlot-fed cattle on	12,518,839.788	10.000			1.500	11,464,271.434	
				Growing / fattening ca	14,207,023.830	10.000	1,253,974	0.250	1.500	13,256,561.697	
				Replacement dairy he	12,970,395.701	10.000			1.500	12,055,646.131	
	Pasture/Paddock (6		Other Mature Cattle	Bulls used principally	12,104,235.821	70.000			3.500	3,984,791.746	
				Cows used to produc	26,776,743.579	70.000			3.500		2
	Liquid Slurry (6 month		Mature Dairy Cows	High-producing cows	55,862,100.341	64.000	1,556,463	0.500	1.500	21,277,703.373	
		Other Cattle	Growing Cattle	Calves pre-weaning	8,009,777.465	64.000			0.750	3,144,293.200	
				Feedlot-fed cattle on	39,285,312.300	64.000			0.750	14,551,578.490	
				Feedlot-fed cattle on	15,378,799.157	64.000			0.750	5,683,143.634	
				Feedlot-fed cattle on	1,268,357.211	64.000	22,574.000		0.750		2
				Feedlot-fed cattle on	37,556,519.364	64.000		0.750	0.750	13,816,320.409	
				Growing / fattening ca	42,621,071.491	64.000	1,253,974	0.750	0.750	16,048,946.112	
<u></u>		D: 0	N. D. C	Replacement dairy he	12,970,395.701	64.000			0.750	4,860,487.452	
С	Anaerobic digester	Dairy Cows	Mature Dairy Cows	High-producing cows	4,703,905.433	10.000	81,919.000		1.500	4,294,954.140	
	Pasture/Paddock (6	01	Consider Comb	High-producing cows	4,703,905.433	64.000	81,919.000		3.500	1,836,764.206	
		Other Cattle	Growing Cattle	Replacement dairy he	1,954,770.259	70.000	26,827.000	1.000	3.500	680,325.578	
ıl										208,113,580.905	

3.C.4 – Synthetic N applied

	manure N		2 of 2) Drainage of managed org cation to managed soils, feed, fuel of						es Nin mineral soils t	that is mineralised Urine	and dung inputs to gra	zed soil	s (1 of	2)
Sector: Category Subcategory Sheet: Data	gory:	Aggregate Sources	and Other Land Use and Non-CO2 Emissions Sources on imissions from managed soils to managed soils	Land									202	0
Region	Unspe	ecified	~											
					Equa	ion 11.1, 11.2								
	Land use	e category	Land use subdivision	Synthetic fertilizer	Synthetic fertilizer applied (kg / yr)	N content (kg N / kg SF)		unt of N applied (kg N / yr)	Emission Factor for Synthetic fertilizer applied (kg N2O-N / kg N applied) Table 11.1	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)			
		ΔŢ	۵Ţ	SF 🛆	V A	Nc		Fsn = A * Nc (or specified)	EF1	N2O-N = Fsn * EF1	N2O = N2O-N * 44/28			
	ecified		Unspecified	Ammonium Bicarbonate	852.000	0.177	Calculat	150.804	0.01	1.508	2.370			
Onsp	echied			Urea	323.000	0.460	Calculat	148.580	0.01	1.486	2.335	2		X
*												2		
Total								200.004		2.004	4 705			
								299.384		2.994	4.705			

3.C.4 – Organic N applied

Drainage of managed or	rganic soils R	ewetting of managed organic soils	Summary of Direct N2O Emissions from managed soils										
-	ailable for applic	ation to managed soils, feed, fuel or	construction uses Synthetic N applied to managed soils	Organic Napplied to mar	naged soils Nin.c	rop residues Ni	n mineral soils	s that is mineralised Uri	ine and dung inputs to gra	azed soils (1 of 2) Urine a	and dung inputs to grazed	d soils (2 of 7	2)
Category: Aggr Subcategory: 3.C.4	regate Sources a	and Other Land Use ind Non-CO2 Emissions Sources on I missions from managed soils managed soils	Land									20	20
Total N f Fraction of ma Fraction of ma	anaged manure u nanaged manure manure used for	ept PRP (N(MMSavb)) = V 208 sed for feed (default 0) = R used for fuel (default 0) = S construction (default 0) = T	113580.905 Fraction of Total N from all MMS except 0.00 Total N from all MMS except PRI 0.00 Fraction of Total N from all MMS 0.00 Fraction of Total N from all MMS	P applied to soils (kg N / yr) =	V*U 2081135	1.000 80.905 0.00 ≑							
				_									
				Equa	ation 11.1-11.4								
Land use cate	tegory	Land use subdivision	Type of Organic amendment	Organic amendment	Organic matter applied (kg / yr)	N content (kg N / kg OM)	Amo	ount of N applied (kg N / yr)	Emission Factor for Organic matter applied (kg N2O-N / kg N applied) Table 11.1	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)		
	ΔŢ	Δγ	ΤΟΑ Δ	OA 🗸	ОМ			Fon = OM * Nc (or specified)	EF1	N2O-N = Fon * EF1	N2O = N2O-N * 44/28		
Unspecified		Unspecified	Total N from all MMS except PRP applied to soil, excluding ricefields					208,113,580.905		2,081,135.809	3,270,356.271		
Cropland - Flooded	d ricefields	Unspecified	Total N from all MMS except PRP applied to ricefields					0.000		0.000	0.000		
	arreenenda	Rice	Other organic amendments (please specify)	sugar beet foam	300,000.000	0.070	Calculated	21,000.000	0.003	63.000	201 2011	2 🖬 🄈	
*												2	
Total								200 124 500 005		2 001 100 000	2 270 455 271		
								208,134,580.905		2,081,198.809	3,270,455.271		

100% as fertilizer

3.C.4 – N in crop residues

sheet	r application to managed soils, feed					Organic N appli			ropresidues													etting of managed organi						
pory: Aggregate So	orestry and Other Land Use urces and Non-CO2 Emissions Sour N2O Emissions from managed soils dues																											
on Unspecified	~																											
	Land use category	Land use subdivision		Crop/grass	Harvested fresh yield for crop T (kg/ha)	Dry matter fraction of harvested crop T	Harvested a matter yield (kg d.m		Total annual area harvested of crop T (ha/yr)	Annual area of crop T burnt (ha/yr)	Combustion factor	Fraction of total area under crop T that is renewed annually		round residues	Ratio of abov residues dry harvested yie T	matter to d for crop	N content of above-ground residues for crop T (kg N/kg d.m.)	Fraction of above-ground residues of crop T removed annually for purposes such as feed, bedding and c		elow-ground s to above- d biomass		low-ground residues sted yield for crop T	N content of below-ground residues for crop T (kg N/kg d.m.)	Annual amount of N in crop residues returned to soils (kg N/yr)	Emission Factor for N in crop residues (kg N2O-N / kg N)	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)	
	⊽ ▲⊽	۸A	ΔŢ	Table 11.2 △ ⊽	, Yield_Fresh (T)	DRY	V	Crop(T)	Area(T)	Area burnt(T)	Cf	FracRenew(T)	V	AGdm(T)		Rag(T) = .Gdm(T) * .000 / Crop .(T) specified	Nag(T)	FracRemove (T)	V	Rbg-bio	⊽	Rbg(T) = Rbg-bio * ((AGdm(T) * 1000 + Crop(T)) / Crop(T)) or specified	Nbg(T)	Fcr	EF1	N2O-N = For * EF1	N2O = N2O-N * 44/28	
Alternative (Eq. 11.7A, 11.7		Unspecified	Tubers	lotus			Specifi		40.000			0.000	Specifi	7.140			0.010	0.000	Specifi			4			0.010			3
Main (Eq. 11.6, 11.7)	Cropland	Maize		Maize	6,800.000	0.870	Calcula	5,916.000	100.000			1.000		6.703	Calcula_	1.133	0.006	0.000	Default	0.220	Calcula	0.469	0.007	5,965.488	0.010	59.655	93.743	3
lain (Eq. 11.6, 11.7)	Cropland - Flooded ricefields	Rice	Grains - Cereals	Rice	5,700.000	0.890	Calcula	5,073.000	100.000			1.000		7.279	Calcula	1.435	0.007	0.800	Default	0.160	Calcula	0.390	0.011	3,193,123	0.003	9.579	15.053	3
ternative (Eq. 11.7A, 11.7		Grazed	Constant and the second second	unspecified	4,900.000		Calcula	4,410.000	1,860.000	186.000	0.950	0.100	Specifi	3.500			0.025	0.000	Specifi	0.800			0.016		0.010	1,472.930		2
ain (Eq. 11.6, 11.7)	Grassland	Grazed	Grass-clover mixtures	unspecified	4,900.000	0.900	Calcula	4,410.000	1,860.000	186.000	0.950	0.100		1	Specifi	1.400	0.025	0.000	Specifi		Specifi	1.400	0.01	278.191.179	0.010	2,781.912	4,371.576	
1																												2
																								434,642.810		4,324.076	6,794.977	_

3.C.4 – N mineralised as SOM losses in mineral soils

	e N available	e for application to managed soils	, feed, fuel or	construction uses Synthetic I	N applied to managed soil	s Organic N applied to n	nanaged soils Nin crop residues Nin mineral soils that i	s mineralised Urine and	dung inputs to grazed soils (1 of 2)	Urine and dung inputs to grazed soils	ls (2 of 2)
rksheet ctor: tegory: bcategory: eet: egion (All	Aggregate 3.C.4 - Dir N in miner	e, Forestry and Other Land Use Sources and Non-CO2 Emissions ect N2O Emissions from managed al soils that is mineralised, in assoc	soils		is a result of changes to la	nd use or management					2020
							Equation 11.8				
Land unit code		Initial land use	Land	use during reporting year	Average loss of soil carbon (tonnes C / yr)	C:N ratio of the soil organic matter	The net amount of N mineralised in mineral soils as a result of loss of soil carbon through change in land use or management (kg N / yr)	Emission Factor for N mineralised (kg N2O-N / kg N) Table 11.1	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)	
V	Δγ	Δ7	ΔV	Δγ	∆Cmineral,LU		Fsom = ∆Cmineral,LU * (1/R) * 1000	EF1	N2O-N = Fsom * EF1	N2O = N2O-N * 44/28	
Approac	NA	NA	Unspecifi	Unspecified	-10.395	15	693.000	0.01	6.930	10.890 📝	2
CL-CL_11	Cropland	Rice	Cropland	Poplar (10-year)	-19.870	10	1,987.000	0.01	19.870	31.224 🧭	2 🖬
CL-CL_20					-2.370	10		0.01	2.370	3.724 📝	_
CL-CL_31					-19.870	10		0.01	19.870	31.224 📝	
CL-CL_51					-19.231	10		0.01	19.231	30.220 📝	
CL-CL_70					-1.890	10		0.01	1.890	2.970 📝	
CL-CL_50	Cropland	Poplar (10-year)	Cropland	Maize	-82.656	10		0.01	82.656	129.887 📝	
CL-CL_61					-74.172	10		0.01	74.172	116.555	
	Unmana	Tidal marshes (unmanaged)	Settleme	Harbor	-12,750.000	15	850,000.000	0.01	8,500.000	13,357.143	
al											
							872,698.775		8.726.988	13,713,838	

INTERGOVERNMENTAL PANEL ON Climate change

3.C.4 – N in manure left on pasture

		_	anaged organic soils			-								
	e N available f	or application to manag	ged soils, feed, fuel or o	construction uses	Synthetic N applied to n	nanaged soils C)rganic N applied to managed soil	s Nin crop residues Nin mine	eral soils that is mir	neralised Urine and du	ung inputs to grazed so	ils (1 of 2) Urine and	d dung inputs to grazed	soils (2 of 2)
Worksheet Sector: Category: Subcategory: Sheet: Data	Aggregate S 3.C.4 - Direc	Forestry and Other Land ources and Non-CO2 E t N2O Emissions from n ing inputs to grazed soi	Emissions Sources on La nanaged soils	and										2020
Region Unsp	pecified	~												
							Equation 11.1, 11	1.2, 11.5						
N sour	rce	Geographical zone	Livestock Category	Livestock Subcategory	Livestock Subdivision	Total N from N source deposited on Pasture, range and paddock (kg N/yr)	Land use category	Land use subdivision	Fraction of N from N source deposited within land-use category/subcat egory	Amount of N from N source deposited on PRP (kg N / yr)	Emission factor for N deposited by grazing livestock (kg N2O-N / kg N deposited) Table 11.1	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)	
Ns	ΔŢ	Z AV	T AV	Tsc ∆⊽	Tsd ∆⊽	NE(Ns)	LU AV	LU AV	F(Ns,LU)	Fprp = NE(Ns) * F (Ns,LU)	EF3prp	N2O-N = Fprp * EF3prp	N2O = N2O-N * 44/28	
Urine and dur	ing	А	Other Cattle	Unspecified	Unspecified	361,201.798	Grassland	Grazed	1.000	361,201.798	0.02	7,224.036		2 🖬 🄈 🗙
* Total														2
										361,201.798		7,224.036	11,352.057	

3.C.4 – N from drained organic soils

Managed manure I	available for app	lication to managed soils, feed, fuel or cons	struction uses S	ynthetic N applied to managed soils	Organi	c N applied to managed soils	N in crop residues N in	mineral soi	ils that is mineralised Urine and dung inputs to gra	azed soils (1 of 2) Urine and dung	g inputs to g	azed so	ils (2 of	2)
Drainage of manage	ed organic soils	Rewetting of managed organic soils Su	mmary of Direct N2	O Emissions from managed soils										
Category: Subcategory: Sheet: Data	Aggregate Sources	y and Other Land Use and Non-CO2 Emissions Sources on Land Emissions from managed soils red organic soils											20	020
Region (All)		~												
						Equation 11.1, 1	1.2							
Land unit code		Initial land use	L	and use during reporting year		Land area of drained organic soils (ha)	Emission Factor for dra organic soils (kg N2O-N / ha / yr Table 11.1 / WS Table	r)	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)				
	7 A 7	7 Δ	V 47	7	$\Delta \nabla$	Adrained	EF2		N2O-N = Adrained * EF2	N2O = N2O-N * 44/28				
MFL-MFL_1		Forest plantation	Managed For	Forest plantation		2,000.000		2.4	4,800.000		7,542.857			2
	Un managed	Primary Forest				600.000		2.4	1,440.000		2,262.857			
UFL-MFL_20					-	350.000		2.4	840.000		1,320.000			
UFL-MFL_20					-	175.000		2.4	420.000		660.000			
UFL-MFL_20		likes and	Cattlemente (Listen and		85.000		2.4	204.000		320.571			
TSL-TSL_1	Settlements (Settlements (100.000		0.800	80.000		125.714			
Total						3,310.000			7,784.000		12,232.000			

3.C.4 – N from rewetted organic soils

Managed manure N available for application to managed soils, feed, fuel or constru Drainage of managed organic soils Rewetting of managed organic soils Summ		Organic N applied to managed soils	N in crop residues N in miner	ral soils that is mineralised Urine and dung inputs to	grazed soils (1 of 2) Urine and dung inputs to	grazed so	ils (2 of 2)
Worksheet Sector: Agriculture, Forestry and Other Land Use Category: Aggregate Sources and Non-CO2 Emissions Sources on Land Subcategory: 3.C.4 - Direct N20 Emissions from managed soils Sheet: Rewetting of managed organic soils (Wetlands supplement, Tier 2) Data							2020
		Equation 3.9 W	S				
Land unit code Initial land use	Land use during reporting year	Land area of rewetted organic soils (ha)	Emission Factor for rewetted organic soils (kg N2O-N / ha / yr)	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)		
		∆ \\ Arewetted	EF	N2O-N = Arewetted * EF	N2O = N2O-N * 44/28		
MWL-MWL_1 Managed Wet Tidal marshes (managed) OSL-MWL-20 Settlements (Urban park	Managed Wet Tidal marshes (managed)	0.0	00 😝				<u>د</u>
Total		100.0	00	0.00	0.0	10	

Negligeable

3.C.4 – Direct N₂O – Summary

Managed manure N available for application to managed soils, feed, fu		ues Nin mineral soils that is mineralised Urine	e and dung inputs to grazed soils (1 of 2) Urine and	dung inputs	to grazed soi	ils (2 of 2)
Drainage of managed organic soils Rewetting of managed organic s	oils Summary of Direct N2O Emissions from managed soils					
Vorksheet						0000
Sector: Agriculture, Forestry and Other Land Use						2020
Category: Aggregate Sources and Non-CO2 Emissions Sources	s on Land					
Subcategory: 3.C.4 - Direct N2O Emissions from managed soils Sheet: Direct N2O emissions from managed soils (summary)						
Data						
	Equation 11.1					
	N source	N2O-N Emissions (kg N2O-N / yr)	N2O Emissions (kg N2O / yr)			
		N2O-N	N2O = N2O-N * 44/28			
Managed soils (excluding flooded rice)	FSN: N in synthetic fertilizers	2.99) 🤇 🎾
	FON: N in animal manure, compost, sewage sludge, other	1,873,022.54				
	FCR: N in crop residues	4,314.49)	
	FSOM: N in mineral soils that is mineralised, in association with loss of soil C from soil organic matter as a result of changes to land use or management	8,726.98	8 13,713.838			
Flooded rice	FSN: N in synthetic fertilizers	0.00	0.000)	
	FON: N in animal manure, compost, sewage sludge, other	62,434.08	5 98,110.705)	
	FCR: N in crop residues	9.57	9 15.05	8 🛛 🛃)	
	FSOM: N in mineral soils that is mineralised, in association with loss of soil C from soil organic matter as a result of changes to land use or management	0.00	0 0.000			
FPRP: Urine and dung inputs to grazed soils		7,224.03	6 11,352.057	. 🛛 🖉)	
FOS: Drainage of managed organic soils (OS_drained)		7,784.00	0 12,232.000)	
FOS: Rewetting of managed organic soils (OS_rewetted)		0.00	0.000			
Total						
		1,963,518.72	2 3,085,529.420			

3.C.5 – Indirect N₂O from volatilisation

N2O from Atmospheric Deposition of N Volatilised worksneet Sector: Agriculture, Forestry and Other L Category: Aggregate Sources and Non-CO Subcategory: 3.C.5 - Indirect N2O Emissions fr Sheet: N2O from Atmospheric Depositio Data	and Use 12 Emissions Sources on Land	unoff from Managed Soils									20	20
Region Unspecified ~	1											
				Equa	tion 11.9, 11.11							
		Annual amount of synthetic fertilizer volatilizes (kg NH3-N+NOx-N)	N that	Amount of animal manure, compost, sewage sludge and other organic N additions applied to soils (kg N / yr)	Amount of urine and dung N deposited by grazing animals (kg N / yr)	Fraction of applied organic N fertilizer materials (FON) and of urine and dung N deposited by grazing animals (FPRP) that volatilises [(kg NH3-N+NO-N) / (kg N)]	Emission factor for N2O emission from atmospheric deposition of N on soils and water surfaces [kg N2O-N/(kg NH3-N+NOx- N)]	deposition of N	N2O Emissions (kg N2O/yr)			
Land use category	Land use subdivision					Table 11.3	Table 11.3	N2O-N=[∑(Fsn(i)*Frac (GASF)(i)) + ((Fon + Fprp) * Frac(GASM))] *EF4	N2O = N2O-N * (44/28)			
ΔΥ	Δ \	∑(Fsn(i)*Frac(GASF)(i))		Fon	Fprp	Frac(GASM)	EF4	N2O-N	N2O			
▶ Unspecified	Unspecified	29.938	2	187,302,254.314		0.2	0.01	374,604.808	588,664.698			2
Cropland	Unspecified		2	20,811,358.090		0.2			65,407.125			
	Rice		2	3.500		0.2			0.011			
Grassland	Grazed		2		361,201.798	0.2	0.01	722.404	1,135.206			
Total		00.000		000 440 045 005	004 004 700				055 007 0 /0	_		
		29.938		208,113,615.905	361,201.798			416,949.935	655,207.040			

3.C.5 – Indirect N₂O from leaching

Unspecified Unsp Cropland Maiz	Ilised from Managed Soils N2O from I ther Land Use on-CO2 Emissions Sources on Land ons from managed soils ff from Managed Soils	N leaching/runoff from 1	Managed Soils			Equation 11.10						2020
		Annual amount of synthetic fertilizer N applied to soils (kg N / yr)	Amount of animal manure, compost, sewage sludge and other organic N additions applied to soils (kg N / yr)	Amount of urine and dung N deposited by grazing animals (kg N / yr)	Amount of N in crop residues (above- and below- ground), including N-fixing crops, and from forage/pasture renewal, returned to soils (kg N / yr)	Amount of N mineralised in mineral soils associated with loss of soil C from SOM as a result of changes to land use or management (kg N / yr)	Amount of N mineralised in organic soils associated with loss of soil C from soil organic matter as a result of changes to land use or management (kg N / yr)	Fraction of all N added to/mineralised in managed soils that is lost through leaching and runoff [kg N / (kg of N additions)]	Emission factor for N2O emissions from N leaching and runoff [kg N2O-N/(kg N leaching/runoff)]	Amount of N2O–N produced from leaching and runoff of N additions to managed soils (kg N2O-N/yr)	N2O Emissions (kg N2O/yr)	
Lunspecified N fro Unsp Cropland Maiz	Land use subdivision							Table 11.3	Table 11.3	N2O-N=(Fsn + Fon + Fprp + Fcr + Fsom + (N from Fos)) * FracLEACH -(H) * EF5	N2O = N2O-N * (44/28)	
Unspecified Unsp Unsp Cropland Maiz	ΔΥ	Fsn	Fon	Fprp	Fcr	Fsom	N from Fos	FracLEACH-(H)	EF5	N2O-N	N2O	
Cropland Unst	N from oxidation of SOM in organic s							0	θ	0.000		230
Cropland Maiz	Unspecified	299.384	187,302,254.314					0.3			662,248.315	
	Unspecified		20,811,358.090					0.3			73,583.016	
	Maize Rice		2.500		5,965.488			0.3				
	Grazed		3.500	361,201,798	3,193.123 425,484.199			0.3			11.302 2,781.497	
	Grazed			361,201.798	425,484.199			0.3	0.00/5	1,770.043	2,781.497	
otal		299.384	208,113,615.905	361,201,798	434,642.810	0.000	0.000			470,046.960	738,645.222	

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

CH₄ emissions from:

3.C.7 – Rice Cultivation

3.C.8 – Indirect N₂O emissions from managed soils

3.C.7 – Rice Cultivation

Category: Aggregate S Subcategory: 3.C.7 - Rice	Forestry and Other Land Use Sources and Non-CO2 Emissi											2020
		Equation 2.2	Equation 5	5.1		Equation 5.2		Equation 5.3	Equa	tion 5.2	Equation 5.1	
			Annual harvested area (ha/yr)	Cultivation period (Day)	Baseline emission factor for continuously flooded fields without organic amendments (kg CH4/ha/Day)	Scaling factor to account for the differences in water regime during the cultivation period	Scaling factor to account for the differences in water regime in the pre- season before the cultivation period	Scaling factor for both typ and amount of organic amendment applied	Scaling factor for soil type, rice cultivar, etc., if available	Adjusted daily emission factor for a particular harvested area (kg CH4/ha/Day)	Annual CH4 emissions from Rice cultivation (Gg CH4/yr)	
Rice ecosystem	Water regime	Land use subdivision			Table 5.11	Table 5.12	Table 5.13	SFo = (1 + Σ(ROAi*CFOAi ^0.59)	EFi = EFc * SFw * SFp * SFo * SFs,r	CH4 = A * t * EFi * 10^-6	
ΔΥ	Δγ	ΔΥ	A	t	Efc	SFw	SFp	SFo	SFs,r	EFi	CH4	
Irrigated	Intermittently flooded	Rice	200.000	140.000	1.300	0.52	1.9			2.554	0.072	
Total								2				
			200.000								0.072	

3.C.8 – CH₄ from drained organic soils

Worksheet Sector: A Category: A Subcategory: 3	Agriculture, Forestry and Other Land Use Aggregate Sources and Non-CO2 Emissions Sources on Land 3.C. 8 - CH4 from Drained Organic Soils CH4 Emissions from drained organic soils							2020
				Equation	on 2.6 WS			
Land unit code	Initial land use	Land use during reporting year		Land area of drained inland organic soil (ha)	Fraction of the total area of drained inland organic soil which is occupied by ditches	emissions from drained organic	CH4 Emissions (Gg CH4 / yr)	
V		Δ ₂	Δ ₇	Adrained	Fditch	EF	CH4 = (Adrained * (1-Fditch) * EF) * 10^-6	
	Managed Fo Forest plantation	Managed Fo	Forest plantation	2,000.000		2.7	0	.005 📝
	Unmanaged Primary Forest]		600.000		2.7		.002 📝
UFL-MFL_2				350.000		2.7		.001 📝
UFL-MFL_2				175.000		2.7		.000
► UFL-MFL_2				85.000		2.7	0	.000 📝 🛃 🄊
Total								202
							0	.009

3.C.9 – CH₄ from drained organic soils

Worksheet Sector: A Category: A Subcategory: 3	Agriculture, Forestry and Other Land Use Aggregate Sources and Non-CO2 Emissions Sources on Land I.C.9 - CH4 from Drainage Ditches on Organic Soils CH4 Emissions from drainage ditches on drained organic soils								202	0
				Equation	n 2.6 WS					
Land unit code	Initial land use	nd Non-CO2 Emissions Sources on Land inage Ditches on Organic Soils drainage ditches on drained organic soils Initial land use Land use during reporting yes A 및 A 및 A 및 orest plantation Managed Fo Forest plantation	nd use during reporting year	Land area of drained inland organic soil (ha)	Fraction of the total area of drained inland organic soil which is occupied by ditches	CH4 Emissions (Gg CH4 / yr)				
V		ΔV	Δ V	Adrained	Fditch	EF	CH4 = (Adrained * Fditch * EF) * 10 [^] -6			
	Managed Fo Forest plantation	Managed Fo	Forest plantation	2,000.000	0.02	2,259		0.090 📝		
	Unmanaged Primary Forest			600.000	0.02			0.027		
UFL-MFL_2				350.000				0.016 📝		
UFL-MFL_2				175.000				0.008		
VFL-MFL_2				85.000	0.02	2,259		0.004		\sum
Total								0.145		_
								0.145		

3.C.11 – CH₄ from rewetting of Tidal marshes

Worksheet Sector: A Category: A Subcategory: 3	griculture, Forestry and ggregate Sources and .C.11 - CH4 Emissions f	es and Tidal Marshes Other Land Use Non-CO2 Emissions Sources on Land from Rewetting of Mangroves and Tidal Marshes vetting of Mangroves and Tidal Marshes						2020
					quation 4.9 WS			
Land unit code		Initial land use	L	and use during reporting year	Land area of rewetted mangroves and tidal marshes (ha)	Emission factor for CH4 emissions from rewetting of mangroves and tidal marshes (kg CH4 / ha / yr) WS Table 4.14	CH4 Emissions (Gg CH4 / yr)	
	V V	Δ \	ΔV	ΔΥ	Arewetted	EF	CH4 = (Arewetted * EF) * 10^-6	
MWL-MWL_1	Managed Wetla	Tidal marshes (managed)	Managed Wetla	Tidal marshes (managed)	0.000	193.7	0.000	
	Settlements (Tr	Urban park			100.000	193.7	0.019	
Total								
							0.019	

3.C.13 – CH₄ from rewetted/created IWMS

~								
		E	quation 5.1 WS					
d unit code Initial land use		Land use during reporting year	Land area of rewetted inland mineral soil (ha)	Emission factor for CH4 emissions from rewetted and created Wetlands on inland Wetland mineral soils (kg CH4 / ha / yr) WS Table 5.4	CH4 Emissions (Gg CH4 / yr)			
	22 D2	۰ ۵ ۷	Arewetted	EF	CH4 = (Arewetted * EF) * 10^-6			
	Cropland Annu	Lotus (long-term)	10.000	900			2	
Peren Oil Palm		Lotus (converted)						
			5.000	900		0.005		
		Arru Lotus (long-term) Cropland Annu	△▽ △▽ △▽ △▽ Annu. Lotus (long-term) Cropland Annu. Lotus (long-term)	Initial land use Land use during reporting year mineral soil (ha) △▽ △▽ △▽ △▽ Arewetted Annu Lotus (long-term) Cropland Annu Lotus (long-term) 10.000	Initial land use Land use during reporting year Land area of rewetted inland mineral soil (in grant wetted and created Wetland mineral soil) (in grant wetted and created wetted and created wetted and created wetted and	Initial land use Land use during reporting year Land area of rewetted inland mineral soils (hg) from rewetted and created Wetlandss on inland Wetland mineral soils (kg) CH4 Emissions (Gg CH4 / yr) A V A V A V A V A V A Rewetted EF CH4 = (Arewetted * EF) * 10^-6 Annu Lotus (long-term) Cropland Annu Lotus (long-term) 10.000 900 Peren 0il Palm Cropland Annu Lotus (converted) 15.000 900 6 5.000 900 900 900	Initial land use Land use during reporting year Land area of rewetted inland mineral soils (ha) from rewetted and created Wetlands on inland Wetlandis on inland Wetlandis (Gg CH4 / yr) CH4 Emissions (Gg CH4 / yr) CH4 Emi	Initial land use Initial land use Initial land use during reporting year Land area of rewetted inland mineral soil (hg) with a / yr) with a / yr. CH4 Emissions (Gg CH4 / yr) CH4 Emissions (Gg CH4 / yr) A V <td< td=""></td<>

Thank you

https://www.ipcc-nggip.iges.or.jp/index.html

ipcc-software@iges.or.jp

INTERGOVERNMENTAL PANEL ON Climate change